試 題

[第1節]

科目名稱	計算機概論			
系所組別	資訊管理學系-	甲組乙組		

-作答注意事項-

- ※作答前請先核對「試題」、「試卷」與「准考證」之<u>系所組別、科目名稱</u>是否相符。
- 1. 預備鈴響時即可入場,但至考試開始鈴響前,不得翻閱試題,並不得書寫、畫記、作答。
- 2. 考試開始鈴響時,即可開始作答;考試結束鈴響畢,應即停止作答。
- 3.入場後於考試開始40分鐘內不得離場。
- 4.全部答題均須在試卷(答案卷)作答區內完成。
- 5.試卷作答限用藍色或黑色筆(含鉛筆)書寫。
- 6. 試題須隨試卷繳還。

科目名稱:計算機概論

本科目共 3 頁 第 1 頁

系所組別:資訊管理學系-甲組、乙組

[Session I] Multip	le Choice				
Choose ONE answ	er only for each qu	estion (4 points	for each que	estion)	
選擇題(單選,每是	夏4分)				
1. Which value is th	e result of the follow	wing subtraction	problem usin	ng two's complement nota	tion?
00001111 - 1010	1010				
A. 10110101	B. 1011100	1 C.	01010101	D. 011000101	
2. Which of the follo	owing items of infor	mation linked to	gether in Ber	rners-Lee "web of notes"	?
A. Trails	B. Nodes	C. Links	D	. Icons	
3. Which layer of th	e TCP/IP hierarchic	-	(4)	a message?	
A. Application	B. Transpo	rt C.	Link	D. Network	
4. What is the outpu	t of the following co	ode fragment?			
	{ 10, 20, 30, 40, 50)};			
System.out.print(
System.out.print(numarray[3]);				
A. 1050	B. 2030	C. 3040	D. 4050		
5 TC . 1		1.00	1	1'1 01 01	
	(00 (00) -	_	18,000	hich of the following state	ment would
	fter two entries were		-		
A. wa, xb, re	B. yc, zd, re	C. 7	re, yc, zd	D. re, wa, xb	
	11	1: 1. 0	.1	1.4	
6. There					
A. SELECT	B. JOIN	C. PRO	JECT	D. Schema	
7 3371.1-1 - 641 - 6-11-		11		-1	1 1 1
			i de applied v	when trying to identify any	underlying
9	hin borrowers' patte				
A. Class descripti		lass discrimination			
C. Cluster analysi	is D. A	ssociation analys	S1S		
D. In the DCD color	arratame than and 26	:	fan aaah na	d omen and blue sales W	(71.: -1 £41
				d, green, and blue color. W	inion of the
_	s the possible color			39*10 ¹²²	
A. 768	B. 16,777,216	C. 256	D. 1.	39.10	
) What of the follow	ving volue is the tim	a complexity of	the problem	of searching for a particul	lan anterior a

科目名稱:計算機概論

本科目共3頁第2頁

系所組別:資訊管理學系-甲組、乙組

list?					-	
A. Θ (log ₂ 1	n) B. ©	(n)	C. Θ (n log	2 n)	D. Θ (n ²)	
10. Which of t	he following algor	ithms represen	nts an optimal	solution in terr	ns of time con	nplexity for sorting
	on sort	B. Bubble so	ort	C. Selection se	ort	D. Merge sort
200	e output of the follo	wing code fra	agment?			
int s = 1; $int n = 1.$						
$int \ n = 1;$ do						
{						
S = S	+ n;					
n++;						
}						
while (s <	(10 * n);					
System.ou	t.println(s);					
A. 211	B. 210	C. 1	20	D. 123		
12. S/MIME c	ryptographic algor	ithms use	to sp	ecify the requir	rement level.	
	and MUST		HOULD and C			
C. SHO	ULD and MIGHT	D. SI	HOULD and M	MUST		
13. Which of t	he following term	is used for cer	tified 802.11b	products?		
A. WAP	В.	Wi-Fi				
C. WEP	D.	WPA				
	he following layer				he functions o	f encoding and
	gnals as well as bit lia access layer		and reception trol layer	<i>:</i>		
	cal link layer		sical layer			
O. 10Br	car mix rayer	υ, μιι,	Sicai iayoi			
[Session II] I	Problems and Cal	culations				
1. (a) (3 pts) R	ewrite the binary r	epresentations	s of <u>10.011</u> i	nto its equivale	nt base ten rep	presentation.
(b) (3 pts) F	Rewrite the ten repr	esentation of	<u>0.01</u> into its	equivalent bina	ary notation.	

2. Under what condition is each of the following data compression techniques most effective? Please give a

科目名稱:計算機概論

本科目共3頁第3頁

系所組別:資訊管理學系-甲組、乙組

specific example or explanation of each.

- (a) (4 pts) Run-length encoding
- (b) (4 pts) Relative encoding
- 3. (6 pts) Identify and explain the three main categories of software. Give a specific example of each.
- 4. Please write the HTML tag that performs following functions.
- (a) (3 pts) Begins the part that describes what will appear on the computer screen
- (b) (3 pts) Marks the end of the HTML document
- (c) (3 pts) Marks the beginning of a paragraph
- (d) (3 pts) Marks the end of a term that is linked to another document
- 5. (6 pts) Given the two relations X and Y below

$$X: A B Y: C D \\ 2 s t 1 \\ 5 z r 3 \\ w 2$$

Draw the relation Result that would be produced by the following statements.

Temp JOIN X and Y where X.A > Y.DResult PROJECT X.B, Y.C from Temp

- 6. Suppose an operating system allocates time slices in 10 millisecond units. Assume the time required for a context switch is negligible.
 - (a) (3 pts) How many processes can obtain a time slice in one second?
 - (b) (3 pts) How many processes can obtain a time slice in one second if half of them use only half of their slice?

試題

[第2節]

科目名稱	管理資訊系統
系所組別	資訊管理學系-甲組

-作答注意事項-

- ※作答前請先核對「試題」、「試卷」與「准考證」之<u>系所組別、科目名稱</u>是否相符。
- 1. 預備鈴響時即可入場,但至考試開始鈴響前,不得翻閱試題,並不得書寫、畫記、作答。
- 2. 考試開始鈴響時,即可開始作答;考試結束鈴響畢,應即停止作答。
- 3.入場後於考試開始 40 分鐘內不得離場。
- 4.全部答題均須在試卷(答案卷)作答區內完成。
- 5.試卷作答限用藍色或黑色筆(含鉛筆)書寫。
- 6. 試題須隨試卷繳還。

科目名稱:管理資訊系統

本科目共 1 頁 第 1 頁

系所組別:資訊管理學系-甲組

總共4題,每題25分

- 1. Regarding the principal risk factors in information systems projects, please
 - a. Identify and describe each of the principal risk factors in information systems projects. (8 分)
 - b. Identify and describe the strategies for controlling project risks. (8 分)
 - c. Explain how sociotechnical design practices can mitigate human and organizational issues that arise when building information systems. (9 分)
- 2. Regarding using intelligent techniques for knowledge management, please
 - a. Define an expert system, describe how it works, and explain its value to business. (8 分)
 - b. Define case-based reasoning and explain how it differs from an expert system. (8 分)
 - c. Define a neural network, describe how it works, and explain its value to business. (9 分)
- 3. Regarding information systems security and control, please
 - a. Explain how security and control provide value to business. (8 分)
 - b. Define computer forensics and explain what it is used for. (8 分)
 - c. Distinguish between disaster recovery planning and business continuity planning. (9 分)
- 4. Regarding business intelligence and business analytics, please
 - a. Define and describe business intelligence and business analytics. (8 分)
 - b. Describe predictive analytics and provide two examples. (8 分)
 - c. Describe big data analytics and provide two examples. (9 分)

試 題

[第2節]

科目名稱	資料結構			
条所組別	資訊管理學	系-乙組	24	9

-作答注意事項-

- ※作答前請先核對「試題」、「試卷」與「准考證」之<u>系所組別、科目名稱</u>是否相符。
- 1. 預備鈴響時即可入場,但至考試開始鈴響前,不得翻閱試題,並不得書寫、畫記、作答。
- 2. 考試開始鈴響時,即可開始作答;考試結束鈴響畢,應即停止作答。
- 3.入場後於考試開始 40 分鐘內不得離場。
- 4.全部答題均須在試卷(答案卷)作答區內完成。
- 5.試卷作答限用藍色或黑色筆(含鉛筆)書寫。
- 6. 試題須隨試卷繳還。

科目名稱:資料結構

本科目共3頁第1頁

系所組別:資訊管理學系-乙組

Figure 1 is a social network of persons. (a) Please draw the adjacent array for the network; (b) Suppose
the hub of a social network is defined as the one with the most links upon him/her. In this graph, the
hub is Bob. Please write a subroutine (in any programming code) to find the hub. (10 points for each
sub-question)

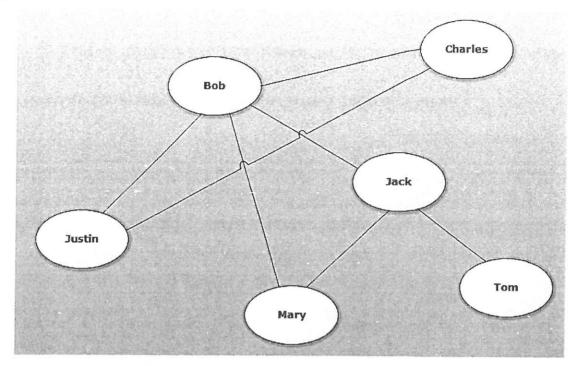


Figure 1.

- 2. Assume you use AVL tree to store the data and there come the six data 15, 4, 26, 1, 8 and 14 in the order and one by one. (a) Please draw the AVL tree from an empty AVL tree to insert the data into the tree (i.e., you need to draw six AVL trees to show the six insertions). (b) Suppose you delete the data 26, and 4 one by one from the tree. Please draw the AVL tree. Also, you need to draw two AVL tree to show the results of the two deletions. (10 points for each sub-question)
- 3. (a) Write a subroutine to count the number of nodes in a double circularly linked list. Suppose each node in the circular linked list has three fields, as follows:

node
data : string
Rlink : *node
Llink : *node

Figure 2.

In addition, there is a link variable, Top, pointing to a node in the circular linked list. (b) suppose you want to delete a node with data being 'CCU'. Please write the subroutine to do it. Note your program

科目名稱:資料結構

本科目共3頁第2頁

系所組別:資訊管理學系-乙組

should consider the situation that the data with value being 'CCU' may or may not exist in the double circularly linked list. (10 points for each sub-question)

4. (a) Write a recursive function to add all the elements in a $n \times n$ (two dimensional) array of integers, $n \ge 1$.

For example, the result of $\begin{bmatrix} 3 & 8 \\ 9 & 13 \end{bmatrix}$ for the addition is 33. (b) Assume the addition of two matrixes is defined

as the addition of the two elements in the same position of the two arrays. For example, $\begin{bmatrix} 3 & 8 \\ 9 & 13 \end{bmatrix}$ +

 $\begin{bmatrix} 10 & 3 \\ -2 & 1 \end{bmatrix} = \begin{bmatrix} 13 & 11 \\ 7 & 14 \end{bmatrix}$. (Note: your answer must be written in a recursive function, otherwise, no points).

(10 points for each sub-question)

5. Figures 3(a) and 3(b) are the depth-first and breath-first search algorithms, respectively. The two algorithms are annotated with numbers before each of their statements. Please write the execution sequence in these numbers step by step to travel the graph from vertex 3 in Figure 3(c). If more than one link can be traverse, the algorithm always chooses the link the smallest one in alphabetical order.

You only need to write the step numbers, like 1, 2, 3, 4, 3, 4, ..., to answer the following two sub-questions. (a) Travel the graph in DFS manner; (b) Travel the graph in BFS manner. (10 points for each sub-question)

Algorithm DFS(G, v):

label v as visited

) for all edge e in G.incidentEdges(v) do

aif edge e is unvisited then

 $\exists w \leftarrow G.opposite(v,e)$

4, if vertex w is unexplored then

5 label e as a discovery edge

G recursively call DFS(G, w)

else

🖫 label e as a back edge

Figures 3(a)

Algorithm BFS(s):

J initialize collection L_0 to contain vertex s

 $2i \leftarrow 0$

3 while L_i is not empty do

5 for all vertex v in Li do

Generall edge e in G.incidentEdges(v) do

7 if edge e is unexplored then

 $g w \leftarrow G.opposite(v, e)$

7-if vertex w is unexplored then

label e as a discovery edge

winto L_{i+1}

helse

t∋label e as a cross edge

 $4i \leftarrow i + 1$

Figure 3(b)

科目名稱:資料結構

本科目共 3 頁 第 3 頁

系所組別:資訊管理學系-乙組

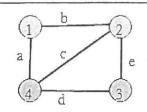


Figure 3(c)

y.